水産試験場諏訪支場

4.1. 調査目的

諏訪湖のワカサギ資源の保護培養を図るため、諏訪湖におけるワカサギの資源尾数推定および 成長等の調査を実施した。

4.2. 調査方法

4.2.1. 資源量調査

令和4年6月~12月に月1回、魚群探知機(以下、魚探)によるワカサギの資源尾数推定調査を実施した。魚探は、FUSOエレクトロニクス(株)製FEG-1041GPS 魚探 1kw ハイスペックを使用した。調査開始時刻は、日中、ワカサギは群れで生活しているため、単体で行動を始める日没後1時間以降とした。調査定線は、諏訪湖を十字に横断するように設定した(図 1)。調査中の魚探の画像は、BMP形式ファイルで保存し、後日パソコンにデータを移し変えて、魚の反応像を計数した(図 2)。過去の捕獲調査で、諏訪湖の沖合での魚探の反応像は、そのほとんどがワカサギであったことから、確認した反応像は全てワカサギと判断して計数した。諏訪湖全体のワカサギ資源尾数は、反応像計数値と探査容積から次の計算式により算出した。なお、探査容積 v は、図 3に示す探査面積に探査距離を乗算する次の式より算出した。

 $N=n \cdot V/v$ N:推定資源尾数、n:反応像計数値、V:諏訪湖容積(m³)、v:探査容積(m³) $v=\{ (\text{平均水深})^2 \times 3.14 \times 12/360 - 1^2 \times 3.14 \times 12/360 \} \times 探査距離$

110 120 130 140 150 160 170 \$
36°03.1597'N 138°04.9521'E 2016.08.22(月) 時刻 20:18
cog 142 速度 2.7 kn GPS SBAS 水温 ----- ©
5.2m 200% 0

図1 資源量調査定線の位置

図2 魚群探知機の反応像 (赤や黄色で表示された点がワカサギの反応像)

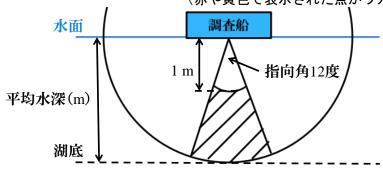


図3 探査面積の範囲

(図中の斜線部が探査面積、水深 1m まではノイズが出るため、探査面積から除く)

4.2.2. 成長調査

令和4年7月から令和5年1月まで月1~2回、諏訪湖漁業協同組合の投網試験獲りの漁獲物を標本とし、0歳魚(小公)の体重、体長および肥満度を求めた。年齢査定は耳石輪紋の観察により行った。

4.3. 調査結果

4.3.1. 資源量調査

6月~11月の推定資源尾数は、約3,112~996万尾であった(図4)。なお、12月上旬に行った 魚探調査はワカサギが湖内で局在していたため資源尾数の推定に至らなかった。ワカサギが成長 し、魚探で捉えられる精度が上がる9月頃の結果を過去5年間と比較すると、今年度の資源尾数 は、平成30年度および令和2年度と近い値であった。

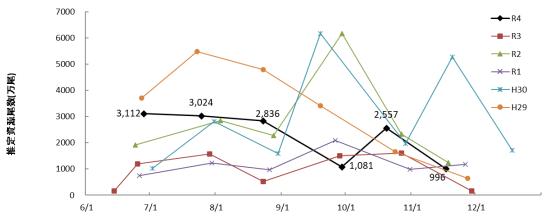


図 4 平成 29~令和 4年の諏訪湖のワカサギ推定資源尾数

4.3.2. 成長調査

0 歳魚の平均体重および平均体長は令和 2 年度と同程度に小さく、平均肥満度は過去 5 年間と同程度の値であった(図 5、図 6、図 7)。本年度はワカサギの資源尾数が多かったため、1 尾当たりの摂餌量が少なくなったことにより、1 個体の大きさが小さくなったと考えられる。

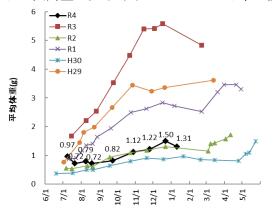


図5 ワカサギ0歳魚の平均体重

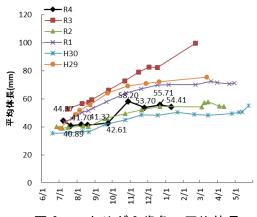
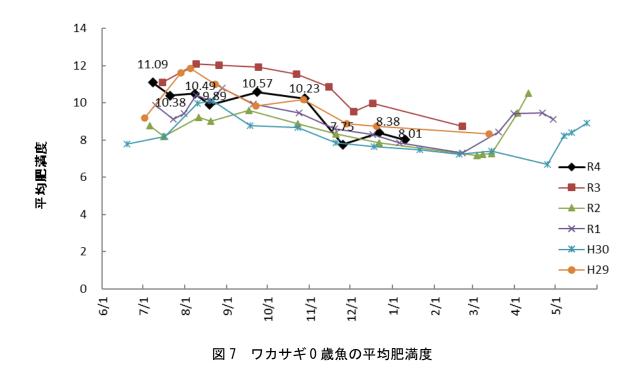



図6 ワカサギ0歳魚の平均体長

4.4. まとめ

- ・6月~11月のワカサギの推定資源尾数は、約3,112~996万尾であった。
- ・0歳魚(小公)の平均体重、平均体長および平均肥満度は、令和2年度と同程度に小さかった。