長野A

資料1の18番の関連資料

温室効果ガス等に関する焼却施設電力の設定

焼却施設電力(消費電力、発電電力、余剰電力)の設定

ここでは、環境影響評価における地球温暖化対策、温室効果ガス対策の予測条件として、計画施設における消費(使用)電力量、発電電力量、余剰電力量について設定した内容を示す。

なお、廃棄物発電については、計画施設内での余熱利用と場外での余熱利用(温水プール・熱供給量:概ね6.3 GJ/h、温浴施設・熱供給量:概ね1.9 GJ/h)を確保したうえで発電を実施する考えである。

1 消費電力等の設定の基本的な考え方

消費電力等の諸元は、プラントメーカー資料の電力収支を基に設定する。計画施設は3炉構成であり、年間の稼動体制を見ると、3炉運転の場合や2炉運転の場合、共通設備の点検目的などから全炉停止の場合など様々である。したがって、消費電力や発電電力は、稼動体制により大きく影響を受けることになる。

このことから、消費電力や発電電力は、年間の概ねの稼動計画を想定し、年間消費電力量、 年間発電電力量としてまとめるものとする。次に消費電力量と発電電力量の差から余剰電力 量の想定を行うものとする。なお、過大評価を避ける点から余剰電力量の想定においては、 炉の起動・停止に伴う概ねの消費電力量を見込んでおくものとする。

2 年間稼動計画の設定

年間稼動計画の設定は、発電電力量が過大にならないように行うものとする。

計画施設は3炉構成であるため、運転体制は一般的に3炉運転、もしくは2炉運転になる。 この時、発電電力量は3炉運転が最も多くなるため、年間稼動計画の設定にあたっては2炉 運転を主体に設定を行うものとする。

具体的には、長野広域連合ごみ処理広域化基本計画に基づく平成 26 年度の処理量 118,348 t /年 (=324.24 t /日×365 日) に対して、2 炉運転主体の運転体制で処理できる仮定の稼動計画を設定する。

この考えに基づいた年間稼動計画を表 1 に示す。全炉停止を 15 日に想定し、2炉運転を 260 日、3 炉運転を 90 日に設定する。

	処理能力 (t /日)	稼働日数等 (日)	年間処理量 (t /年)
3 炉運転	450	90	40, 500
2 炉運転	300	260	78, 000
全炉停止	0	15	0
計	_	365	118, 500

表 1 年間稼動計画

[※]年間処理量=処理能力×稼動日数等

3 電力収支の設定

設定条件

電力収支はプラントメーカー資料を基に設定する。表 2 にプラントメーカー資料の 3 炉運転時の消費電力、発電電力、余剰電力を示す。

前述したとおり余熱利用の計画が過大にならないように、発電電力、余剰電力が最も少ないB社の電力収支を参考に設定を行うものとする。

表3にB社の3炉運転、2炉運転、全炉停止時の電力収支を示す。なお、当該電力収支に おいて、3炉運転の灰溶融炉の稼動体制は2炉、2炉運転の灰溶融炉の稼動体制は1炉であ る。

A社 B社 C社 消費電力(kW) 4, 384 4,740 5,010 発電電力(kW) 8,320 7,780 9,000 余剰電力(kW) 3,936 3,040 3,990 3 炉運転 3 炉運転 3 炉運転 ・基準ごみ質 ・基準ごみ質 ・基準ごみ質

表 2 プラントメーカー資料における電力収支について

昼間冬季

	3炉運転	2炉運転	全炉停止
消費電力(kW)	4, 740	3, 230	1, 090
発電電力 (kW)	7, 780	4, 280	0
余剰電力(kW)	3, 040	1,050	0
設定条件	・基準ごみ質・夏季	・基準ごみ質・夏季	_

表 3 運転体制別の電力収支について

• 夏季

[※]上表の数値は、各社、基準ごみ質において発電電力が最も小さくなる条件時の値を記載。

[※]上表の数値は、プラントメーカー資料のうちB社の資料の値を記載。

4 年間消費電力等の設定

年間消費電力量、年間発電電力量、年間余剰電力量は、表 1 の年間稼動計画と表 3 の運転 体制別の電力収支から設定する。

(1) 年間消費電力量

年間の消費電力量を表 4 に示す。消費電力量は、年間 30,785 MWh 程度が見込まれる。

表 4 年間消費電力量の設定

	稼働日数等 (日)	消費電力 (kW)	年間消費電力量 (MWh)
3 炉運転	90	4,740	10, 238
2 炉運転	260	3, 230	20, 155
全炉停止	15	1, 090	392
計	365	_	30, 785

[※]年間消費電力量=稼働日数等×消費電力×24 h

(2) 年間発電電力量

年間の発電電力量を表 5 に示す。発電電力量は、年間 43,512 MWh 程度が見込まれる。

表 5 年間発電電力量の設定

	稼働日数 (日)	発電電力 (kW)	年間発電電力量 (MWh)
3 炉運転	90	7, 780	16, 805
2 炉運転	260	4, 280	26, 707
全炉停止	15	0	0
計	365	_	43, 512

[※]年間消費電力量=稼働日数等×発電電力×24 h

(3) 年間余剰電力量

年間の余剰電力量を表 6 に示す。余剰電力量は、年間 12,727 MWh 程度が見込まれる。

表 6 年間余剰電力の設定

	電力量	備考
年間消費電力量(MWh)	30, 785	
年間発電電力量 (MWh)	43, 512	
年間余剰電力量(MWh)	12, 727	

[※]年間余剰電力量=年間発電電力量-年間消費電力量

(4) 起動・停止に伴う消費電力を考慮した年間余剰電力量

基本的な考え方で示したとおり、年間余剰電力量には起動・停止に伴う消費電力を見込むものとする。

起動・停止に伴う概ねの消費電力を想定し、表 6 に示した年間余剰電力量から差し引くことで、年間余剰電力が過大とならないように設定を行うこととする。

① 起動・停止に伴う消費電力

起動・停止に伴う消費電力は、電力収支で参考としたB社の値を参考にするものとする。1 炉稼動時に必要な消費電力を、起動・停止時に必要な電力であると想定し計算を行うものとする。この時、溶融炉の消費電力は含まないこととする。

起動・停止の期間と年間回数は、「ごみ処理施設整備の計画・設計要領 (社)全国都市 清掃会議」に示されている点検補修計画の参考例に基づき、起動・停止にそれぞれ3日 間、起動・停止の年間回数を年3回に想定する。

以上から、起動・停止に伴う消費電力は、表7に示すとおり、概ね2,255 MWh を見込むものとする。

	電力量等	備考	
① 1炉分の消費電力 (kW)	1,740	B社技術資料において次の条件下の値を採用。 ・基準ごみ質 ・夏季 ・溶融炉消費電力は含まないものとする。	
② 年間の起動及び停止作業 日数 (日)	18	(起動3日/回+停止3日/回)×3回/年	
③ 起動及び停止作業に伴う 年間消費電力 (MWh)	2, 255	①×24 h×②×3炉÷1,000	

表 7 起動・停止時の消費電力

② 起動・停止に伴う消費電力を考慮した年間余剰電力量

表 6 に示した年間余剰電力量から、表 7 の起動・停止時の消費電力を差し引くことで、 余剰電力の過大評価を避けるものとする。以上から、表 8 に示すとおり本資料では年間 余剰電力を概ね 10,472 MWh 見込むものとする。

表 8 起動・停止に伴う消費電力を考慮した年間余剰電力量

	電力量	備考
年間余剰電力量(MWh)	12, 727	
起動・停止に伴う消費電力 (MWh)	2, 255	
起動・停止を考慮した年間 余剰電力量 (MWh)	10, 472	

※起動・停止を考慮した年間余剰電力量=年間余剰電力量-起動・停止に伴う消費電力